Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 10(1): 22, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217633

RESUMO

The cells of origin of neurogenic heterotopic ossifications (NHOs), which develop frequently in the periarticular muscles following spinal cord injuries (SCIs) and traumatic brain injuries, remain unclear because skeletal muscle harbors two progenitor cell populations: satellite cells (SCs), which are myogenic, and fibroadipogenic progenitors (FAPs), which are mesenchymal. Lineage-tracing experiments using the Cre recombinase/LoxP system were performed in two mouse strains with the fluorescent protein ZsGreen specifically expressed in either SCs or FAPs in skeletal muscles under the control of the Pax7 or Prrx1 gene promoter, respectively. These experiments demonstrate that following muscle injury, SCI causes the upregulation of PDGFRα expression on FAPs but not SCs and the failure of SCs to regenerate myofibers in the injured muscle, with reduced apoptosis and continued proliferation of muscle resident FAPs enabling their osteogenic differentiation into NHOs. No cells expressing ZsGreen under the Prrx1 promoter were detected in the blood after injury, suggesting that the cells of origin of NHOs are locally derived from the injured muscle. We validated these findings using human NHO biopsies. PDGFRα+ mesenchymal cells isolated from the muscle surrounding NHO biopsies could develop ectopic human bones when transplanted into immunocompromised mice, whereas CD56+ myogenic cells had a much lower potential. Therefore, NHO is a pathology of the injured muscle in which SCI reprograms FAPs to undergo uncontrolled proliferation and differentiation into osteoblasts.

2.
Front Cell Dev Biol ; 9: 611842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748104

RESUMO

Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-ß in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.

4.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093266

RESUMO

Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury-induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad.


Assuntos
Macrófagos/metabolismo , Oncostatina M/metabolismo , Ossificação Heterotópica/imunologia , Ossificação Heterotópica/metabolismo , Animais , Antígenos CD34 , Lesões Encefálicas , Diferenciação Celular , Proliferação de Células , Células Endoteliais , Feminino , Hematopoese , Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade beta de Receptor de Oncostatina M , Ossificação Heterotópica/patologia , Osteogênese , Medula Espinal , Transcriptoma
5.
PLoS One ; 12(8): e0182454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854256

RESUMO

We previously reported the development of a new acquired neurogenic HO (NHO) mouse model, combining spinal cord transection (SCI) and chemical muscle injury. Pathological mechanisms responsible for ectopic osteogenesis after central neurological damage are still to be elucidated. In this study, we first hypothesized that peripheral nervous system (PNS) might convey pathological signals from injured spinal cord to muscles in NHO mouse model. Secondly, we sought to determine whether SCI could lead to intramuscular modifications of BMP2 signaling pathways. Twenty one C57Bl6 mice were included in this protocol. Bilateral cardiotoxin (CTX) injection in hamstring muscles was associated with a two-stage surgical procedure, combining thoracic SCI with unilateral peripheral denervation. Volumes of HO (Bone Volume, BV) were measured 28 days after surgery using micro-computed tomography imaging techniques and histological analyses were made to confirm intramuscular osteogenesis. Volume comparisons were conducted between right and left hind limb of each animal, using a Wilcoxon signed rank test. Quantitative polymerase chain reaction (qPCR) was performed to explore intra muscular expression of BMP2, Alk3 and Id1. Nineteen mice survive the complete SCI and peripheral denervation procedure. When CTX injections were done right after surgery (n = 7), bilateral HO were detected in all animals after 28 days. Micro-CT measurements showed significantly increased BV in denervated paws (1.47 mm3 +/- 0.5) compared to contralateral sides (0.56 mm3 +/-0.4), p = 0.03. When peripheral denervation and CTX injections were performed after sham SCI surgery (n = 6), bilateral HO were present in three mice at day 28. Quantitative PCR analyses showed no changes in intra muscular BMP2 expression after SCI as compared to control mice (shamSCI). Peripheral denervation can be reliably added to spinal cord transection in NHO mouse model. This new experimental design confirms that neuro inflammatory mechanisms induced by central or peripheral nervous system injury plays a key role in triggering ectopic osteogenesis.


Assuntos
Músculos/patologia , Ossificação Heterotópica/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Proteína Morfogenética Óssea 2/análise , Proteínas Cardiotóxicas de Elapídeos , Denervação , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/inervação , Ossificação Heterotópica/induzido quimicamente , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/etiologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/induzido quimicamente , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/etiologia , Microtomografia por Raio-X
6.
Cancer Res ; 75(22): 4753-65, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26404004

RESUMO

Primary myelofibrosis is a myeloproliferative neoplasm that is a precursor to myeloid leukemia. Dysmegakaryopoiesis and extramedullary hematopoiesis characterize primary myelofibrosis, which is also associated with bone marrow stromal alterations marked by fibrosis, neoangiogenesis, and osteomyelosclerosis. In particular, contributions to primary myelofibrosis from mesenchymal stromal cells (MSC) have been suggested by mouse studies, but evidence in humans remains lacking. In this study, we show that bone marrow MSCs from primary myelofibrosis patients exhibit unique molecular and functional abnormalities distinct from other myeloproliferative neoplasms and these abnormalities are maintained stably ex vivo in the absence of leukemic cells. Primary myelofibrosis-MSC overexpressed heparin-binding cytokines, including proinflammatory TGFß1 and osteogenic BMP-2, as well as glycosaminoglycans such as heparan sulfate and chondroitin sulfate. Transcriptome and functional analyses revealed alterations in MSC differentiation characterized by an increased osteogenic potential and a TGFß1 signaling signature. Accordingly, phospho-Smad2 levels were intrinsically increased in primary myelofibrosis-MSC along with enhanced expression of the master bone regulator RUNX2, while inhibition of the endogenous TGFß1 receptor TGFßR1 impaired osteogenic differentiation in these MSCs. Taken together, our results define the source of a critical osteogenic function in primary myelofibrosis that supports its pathophysiology, suggesting that combined targeting of both the hematopoietic and stromal cell compartments in primary myelofibrosis patients may heighten therapeutic efficacy.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/patologia , Ossificação Heterotópica/fisiopatologia , Mielofibrose Primária/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
7.
Haematologica ; 100(6): 757-67, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25840601

RESUMO

Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the "bad seed in bad soil" hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis.


Assuntos
Megacariócitos/metabolismo , Mielofibrose Primária/metabolismo , Células Estromais/metabolismo , Tetraspanina 29/fisiologia , Trombopoese/fisiologia , Técnicas de Cocultura , Humanos , Megacariócitos/patologia , Mielofibrose Primária/patologia , Células Estromais/patologia
8.
J Pathol ; 236(2): 229-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25712044

RESUMO

Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high-morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)-induced NHO in genetically unmodified mice. Formation of NHO, measured by micro-computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle-derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate-loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology.


Assuntos
Macrófagos/fisiologia , Miosite/etiologia , Ossificação Heterotópica/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Cardiotoxinas/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Paraplegia/complicações , Células-Tronco/fisiologia
9.
Blood ; 123(2): 191-202, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24277075

RESUMO

In addition to its well-known effect on migration and homing of hematopoietic stem/progenitor cells (HSPCs), CXCL12 chemokine also exhibits a cell cycle and survival-promoting factor for human CD34(+) HSPCs. CXCR4 was suggested to be responsible for CXCL12-induced biological effects until the recent discovery of its second receptor, CXCR7. Until now, the participation of CXCR7 in CXCL12-induced HSPC cycling and survival is unknown. We show here that CXCL12 was capable of binding CXCR7 despite its scarce expression at CD34(+) cell surface. Blocking CXCR7 inhibited CXCL12-induced Akt activation as well as the percentage of CD34(+) cells in cycle, colony formation, and survival, demonstrating its participation in CXCL12-induced functional effects in HSPCs. At steady state, CXCR7 and ß-arrestin2 co-localized near the plasma membrane of CD34(+) cells. After CXCL12 treatment, ß-arrestin2 translocated to the nucleus, and this required both CXCR7 and CXCR4. Silencing ß-arrestin expression decreased CXCL12-induced Akt activation in CD34(+) cells. Our results demonstrate for the first time the role of CXCR7, complementary to that played by CXCR4, in the control of HSPC cycling, survival, and colony formation induced by CXCL12. We also provide evidence for the involvement of ß-arrestins as signaling hubs downstream of both CXCL12 receptors in primary human HSPCs.


Assuntos
Arrestinas/metabolismo , Ciclo Celular , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR/metabolismo , Antígenos CD34/metabolismo , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Ativação Enzimática , Humanos , Espaço Intracelular/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , beta-Arrestinas
10.
Cell Mol Biol Lett ; 15(4): 600-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20803258

RESUMO

Transient receptor potential canonical (TRPC) channels are key players in calcium homeostasis and various regulatory processes in cell biology. Little is currently known about the TRPC subfamily members in mesenchymal stem cells (MSC), where they could play a role in cell proliferation. We report on the presence of TRPC1, 2, 4 and 6 mRNAs in MSC. Western blot and immunofluorescence staining indicate a membrane and intracellular distribution of TRPC1. Furthermore, the decrease in the level of TRPC1 protein caused by RNA interference is accompanied by the downregulation of cell proliferation. These results indicate that MSC express TRPC1, 2, 4 and 6 mRNA and that TRPC1 may play a role in stem cell proliferation.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Coelhos , Canais de Cátion TRPC/genética
11.
Glia ; 57(16): 1716-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19373935

RESUMO

In the most common primary brain tumors, malignant glioma cells invade the extracellular matrix (ECM) and proliferate rapidly in the cerebral tissue, which is mainly composed of hyaluronan (HA) along with the elastin present in the basement membrane of blood vessels. To determine the role of ECM components in the invasive capacity of glioma cell lines, we developed a 3-D cell-culture system, based on a hydrogel in which HA can be coreticulated with kappa-elastin (HA-kappaE). Using this system, the invasiveness of cells from four glioma cell lines was dramatically increased by the presence of kappaE and a related, specific peptide (VGVAPG)(3). In addition, MMP-2 secretion increased and MMP-12 synthesis occurred. Extracellular injections of kappaE or (VGVAPG)(3) provoked a pronounced and dose-dependent increase in [Ca(2+)](i). kappaE significantly enhanced the expression of the genes encoding elastin-receptor and tropoelastin. We propose the existence of a positive feedback loop in which degradation of elastin generates fragments that stimulate synthesis of tropoelastin followed by further degradation as well as migration and proliferation of the very cells responsible for degradation. All steps in this ECM-based loop could be blocked by the addition of either of the EBP antagonists, lactose, and V-14 peptide, suggesting that the loop itself should be considered as a new therapeutic target.


Assuntos
Elastina/metabolismo , Matriz Extracelular/metabolismo , Glioblastoma/patologia , Invasividade Neoplásica/patologia , Oligopeptídeos/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Elastina/farmacologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Glioblastoma/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Oligopeptídeos/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Tropoelastina/genética , Tropoelastina/metabolismo
13.
Clin Cardiol ; 26(3): 127-31, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12685618

RESUMO

BACKGROUND: Mitral regurgitation (MR) is frequently associated with aortic stenosis. Previous reports have shown that coexisting mitral insufficiency can potentially regress after aortic valve replacement. HYPOTHESIS: This study sought to assess the frequency and severity of MR before and after aortic valve replacement for aortic stenosis and to define the determinants of its postoperative evolution. METHODS: For this purpose, 30 adult patients referred for aortic valve surgery underwent pre- and postoperative transthoracic and transesophageal echocardiography and color Doppler examination. RESULTS: Mean preoperative left ventricular ejection fraction was 57 +/- 16% and remained unchanged postoperatively. Preoperative MR was usually mild to moderate and correlated with aortic stenosis severity and left ventricular systolic dysfunction. The color Doppler mitral regurgitant jet area significantly decreased during the postoperative period (p = 0.016) as left ventricular loading conditions returned to normal, suggesting an early decrease of the functional part of MR. On the other hand, the mitral regurgitant jet width at the origin remained unchanged. Statistical analysis found pulmonary artery pressure (p = 0.02) an d indexed left ventricular mass (p = 0.009) to be preoperative predictive factors of postoperative MR improvement. Predictive factors of postoperative MR severity were left atrial diameter (p = 0.02), pulmonary artery pressure (p = 0.003), and the presence of mitral calcifications (p = 0.004). CONCLUSION: In our cohort of patients with normal left venticular ejection fraction, the majority of moderate MR, associated with severe aortic stenosis, regresses early after aortic valve replacement. Mitral calcifications and/or left atrial dilation seem to be predictive factors of fixed MR.


Assuntos
Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/epidemiologia , Estenose da Valva Aórtica/cirurgia , Ecocardiografia Doppler , Ecocardiografia Transesofagiana/métodos , Implante de Prótese de Valva Cardíaca/métodos , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/diagnóstico por imagem , Estudos de Coortes , Angiografia Coronária , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Cuidados Pré-Operatórios , Probabilidade , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...